Environmental Tobacco Smoke and Sudden Infant Death Syndrome: A Review

Margaret A. Adgent, MSPH

ASPH Environmental Public Health Fellow, National Center for Environmental Assessment, US EPA1

Background

Environmental tobacco smoke (ETS), containing the developmental neurotoxicant, nicotine, is a prevalent component of indoor air pollution. Given that there is a strong association with active maternal smoking and sudden infant death syndrome (SIDS), this project aimed to ascertain whether SIDS may also be associated with ETS exposure in infants of nonsmoking mothers.

Is there an association?

Odds ratio (95% CI); Adjusted for Reference Surveyed time of Surveyed Surveyed amount Analyzed I smoking during pregnancy and other factors smoking of smoking of smoking among nonsmoking Paternal mothers? 242 251 unspecified unspecified cigarettes/day Nicholl & Yes O'Cathain, 1992 Schonedorf & 435 6098 Postnatal unspecified Unspecified Yes 1.41w (1.04, 1.90) Keilv, 1992 0.93aa (0.68, 1.27) Mitchell et al., 485 1800 Postnatal 1.37 (1.02, 1.84) 1.17 (0.84, 1.63) unspecified cigarettes/day Yes 1993 Klonoff-200 200 Prenatal Around # adults No 3.46a (1.91, 6.28) 2.18a (1.09, 4.38) ohen et al.. Postnatal mother 1995 room w cigarettes/day 195 780 unspecified Around infant Yes 2.50 (1.48, 4.22) 147 276 unspecified unspecified Brooke et al.. # parents smoking; cigarettes/day Before unspecified preg. Prenatal smoking: 0.9^p (0.6, 1.4) 1.2^a (0.8, 1.9) 1,2a (0,6, 2,2) cigarettes/day Postnatal Dwyer et al., 1999 35 9000 Prenatal Around # adults No 0.72 (0.48, 1.46) Postnatal mother cigarettes/day Carpenter et 745 2411 Postnatal al., 2004 unspecified cigarettes/day No

Review Results: There are few ong these studies, the following

- Paternal/household exposures are most often only measured in the postnatal period and not prenatally
- Exposure data is vague; specific information regarding the amount or location of smoking is not known in many instances
- Only 6 out of 9 studies examined the risk of SIDS in paternal smoking/maternal nonsmoking environments (Table 2)
- •Small sample size is an issue in several studies, particularly in the
- •Odds ratios (given in Tables 1 & 2) are inconsistent across studies

rable 2. Faternar-only smoking sub-analyses							
Reference		Sub-a	Odds Ratio (95% CI); Paternal smoker & maternal				
	ETS exposure (non-maternal)			No exposure			
	Cases	Controls	Cases	Controls	nonsmoker*		
Nicholl & O'Cathain, 1992	52	67	54	97	1.39 1.63 (1.11, 2.40)**		
Schonedorf & Keily, 1992	not provided	not provided	not provided	not provided	1.33 (0.77, 2.27) ^w 1.00(0.62, 1.58) ^{aa}		
Mitchell et al., 1993	not provided	not provided	not provided	not provided	1.00(0.64-1.56)		
Blair et al., 1996	40	163	33	421	3.41 (1.98, 5.88)		
Brooke et al., 1997	11	45	20	137	1.72 (0.94, 3.13) 2.12 (0.99, 4.55)***		
Alm et al., 1998	18	138	74	462	0.8 (0.5, 1.5) ^a		

Therefore, it is unclear if a strong association exists between paternal or household smoking exploration regarding the biologic plausibility such a relationship

Biologic Plausibility

 Nicotine readily crosses the placenta Nicotine specific biomarkers are detected in fetal/neonate tissues and fluids (see below), often in concentrations higher than those found in maternal fluids indicating a capacity to cross the placenta and concentrate in the fetus

- 2. Both maternal and neonatal ETS exposures result in detectible nicotine/cotinine in biological samples Nicotine specific biomarkers are found at measurable levels in infants of nonsmoking mothers exposed to ETS. Concentrations are significantly higher than in unexposed infants and similar to levels found in infants of light active maternal smokers
- Nicotine is a potent developmental neurotoxicant Nicotine displays the capacity to impair arousal and awakening responses in hypoxic

Study	Species	Dose of nicotine	Expos. period	Measure	Outcome
Lewis and Bosque, 1995	Human Infant; 8-12 weeks	Maternal Smoking	Pre/ post natal	Observation of awakening response, or its absence	254% of infants of smokers failed to awaken 215% of infants of nonsmokers failed to awaken
Slotkin et al., 1995	Rat	0, 2, 6 mg/kg/ day	Prenatal	Mortality	Significantly higher mortality at highest dose
Fewell and Smith, 1998	Rat	0, 6 mg/kg/ day	GD5 – PD 5-6	?Time to last gasp ?Autoresus.	?No effect in time to last gasp ?Exposed sustained significantly fewer periods of hypoxia
Campbell et al., 2001	Infant	Maternal Smoking	Active maternal smoking	Ventilatory responses	Increased ventilatory sensitivity observed in exposed; exposed more likely to wake from asphyxia
Fewell and Smith, 2001	Rat	0, 1.5, 3, 6 mg/kg/ day	GD 6 – PD 5-6	?Time to last gasp ?Autoresus.	?No effect in Time to last gasp ?Rats exposed at 3 and 6 mg/kg/day sustained significantly fewer periods of hypoxia than lower exposures and controls
Hafstrom, 2002	Lamb	0, 0.5 mg/kg/ day	Last 49 days of gest.	Time to arousal from sleep during hypoxia	Time significantly longer in exposed

4. Nicotinic acetylcholine receptor (nAChR) binding may provide a mechanistic basis for developmental toxicity Nicotine binding to nAChRs may induce excessive and/or premature release of neurotransmitters, possibly leading to altered development of the nervous system (Slotkin, 2004), or inhibition of arousal mechanisms (Hafstrom et al., 2002).

Conclusions

- have explored the association between normal mechanisms for responding to SIDS and perinatal ETS exposure.
- Despite inconsistencies in existing epidemiologic evidence, non-maternal smoking does appear to have some effect on an infant's risk of SIDS.
- Such an association is biologically plausible given the detection of nicotine and cotinine in fetal and neonatal tissues and fluids in infants of nonsmoking mothers.
- Acting on nAChRs, nicotine is capable of disrupting a developing
- Relatively few investigative efforts nervous system in such a way that hypoxia are inhibited.
 - While impaired recovery from hypoxia is seen most clearly in animal studies at high doses of nicotine, it is observed at doses near or equal to ETS exposures.
 - · Efforts should be made not only to discourage pregnant women from actively smoking, but discourage fathers and household member from smoking around pregnant mothers and neonates.

